A New Path to Longevity

Researchers have uncovered an ancient mechanism that retards aging. Drugs that  tweaked it could well postpone cancer, diabetes and other diseases of old age.

On a clear November morning in 1964 the Royal Canadian Navy’s Cape Scott embarked from Halifax,Nova Scotia, on a four-month expedition. Led by the late Stanley Skoryna, an enterprising McGill University professor, a team of 38 scientists on board headed for Easter Island, a volcanic speck that juts out from the Pacific 2,200 miles west of Chile. Plans were a foot to build an airport on the remote island, famous for its mysterious sculptures of enormous heads, and the group wanted to study the people, flora and fauna
while they remained largely untouched by modernity.
The islanders warmly welcomed Skoryna’s team,which brought back hundreds of specimens of plants and animals, as well as blood and saliva from all 949 of the residents. But a test tube of dirt turned out to be the biggest prize: it contained a bacterium that made a defensive chemical with an amazing property—the ability to prolong life in diverse species.
Several research teams have now demonstrated that the chemical, named rapamycin, boosts the maximum life span of laboratory mice beyond that of untreated animals. Dubious anti-aging claims are sometimes made based on data showing increased average life span, which can be achieved by antibiotics or other  drugs that reduce premature death yet have nothing to do with aging. In contrast, increased maximum life span (often measured as the mean life span of the  longest-lived 10 percent of a population) is a hallmark of slowed aging. No other drug has convincingly  extended maximum life span in any of our mammalian  kin—gerontology’s long-awaited version of breaking the sound barrier. The success in mice has therefore been a game changer for scientists who study aging and how to mitigate its effects. Gerontologists dearly want to find a simple intervention for slowing aging,not merely to increase longevity but because putting a
brake on aging would be a broad-brush way to delay or slow progression of so much of what goes wrong with us as we get old, from cataracts to cancer.
For years gerontologists’ hopes of discovering antiaging compounds had been on a roller coaster.
Optimism rose with the discovery of gene mutations that extend maximum life span in animals and with new insights into how calorie restriction produces the same effect in many species. Yet the advances, for all their promise, did not reveal any drugs that could
stretch the outer limits of longevity in a mammal.
Although calorie restriction, which involves nutritionally adequate near-starvation diets, can both do that and delay cancer, neurodegeneration, diabetes and other age-related disorders in mice, very stringent dieting is not a feasible option for slowing aging in
most mortals.
In 2006 resveratrol, the famous ingredient in red wine that replicates some of calorie restriction’s effects in  mice, seemed likely to break through the barrier when
it was shown to block the life-shortening  consequences of high-fat diets in the rodents. But this substance, which is thought to act on enzymes known as sirtuins, later failed to extend maximum life span in mice fed normal diets. The disappointing picture  suddenly brightened again when the rapamycin results were announced in mid-2009. A trio of labs jointly reported that rapamycin, by then known to inhibit cell growth, extended maximum life span by some 12 percent in mice in three parallel experiments  sponsored by the National Institute on Aging. What is more, to gerontologists’ amazement, the drug extended average survival by a third in old mice that were presumed to be too damaged by aging to respond.
Rapamycin’s shattering of the life span barrier in mammals has riveted attention on a billion-year-old mechanism that appears to regulate aging in mice and other animals and may well do the same in humans. Its mainspring is a protein called TOR (target of
rapamycin) and the gene that serves as the protein’s blueprint. TOR is now a subject of intense scrutiny in both gerontology and applied medicine because a growing number of animal and human studies suggest that suppressing the activity of the mammalian version
(mTOR) in cells can lower the risk of major agerelated diseases, including cancer, Alzheimer’s, Parkinson’s, heart muscle degeneration, type 2 diabetes, osteoporosis and macular degeneration. The  remarkable diversity of potential benefits implies that if medicines able to target mTOR safely and reliably could be found, they might be used to slow the aging process in people, as rapamycin has in mice and other species—a possibility with profound implications for preventive medicine. (Rapamycin itself, unfortunately,
has side effects that probably preclude testing whether  it slows human aging.)

Similar predictions have been made for drugs that act on other molecules, notably the sirtuins. So what is different with mTOR? The finding that a drug has convincingly extended maximum life span in a mammal by acting on the molecule means that mTOR
is central to mammalian aging and that researchers are now a lot closer than ever before to finding ways to brake the aging process. “It sure looks like mTOR is the biggest game in town today and probably for the next decade,” says Kevin Flurkey, a gerontologist at
the Jackson Laboratory in Bar Harbor, Me., and a coauthor of the rapamycin study in mice.
THE RESEARCH LEADING TO the discovery of  TOR’s influence on aging took shape when the Skoryna expedition turned over its soil samples to what was then Ayerst Laboratories in Montreal.
Pharmaceutical researchers had been finding antibiotics in pinches of dirt since the 1940s, and so Ayerst’s researchers screened the samples for antimicrobials.
In 1972 they sifted out a fungal inhibitor and named it rapamycin because Easter Island is also known locally as Rapa Nui. Ayerst initially hoped to use it to treat yeast infections. But then, scientists exploring its properties in cell-culture studies and on animals’
immune systems found that it can hinder proliferation of immune cells, prompting its development instead to prevent immune rejection of transplanted organs. In 1999 rapamycin received U.S. Food and Drug Administration approval for patients who had received a kidney transplant. In the 1980s researchers also learned that the drug inhibits tumor growth, and since 2007 two derivatives of it—Pfizer’s temsirolimus and Novartis’s everolimus—have been approved to treat various kinds of cancer.
Biologists found rapamycin’s ability to depress  proliferation of both yeast and human cells highly intriguing—it suggested that the compound suppresses the actions of a growth-regulating gene conserved across the billion years of evolution between yeast and
people. (Cells grow; expanding in size, when they are a preparing to divide and proliferate.) In 1991 Michad N. Hall and his colleagues at the University of Basel in Switzerland identified the ancient target by discovering that rapamycin inhibits the effects of two
growth-governing yeast genes, which they named TOR1 and TOR2. Three years later a number of investigators, including Stuart Schreiber of Harvard University and David Sabatini, now at the Whitehead

(to be continued)

By David Stipp

source Scientific American

Posted in SCIENCE=EPI-HISTEME | Tagged , , , , | Leave a comment











πηγη  καθημερινη

Posted in SCIENCE=EPI-HISTEME | Tagged , , , , | Leave a comment

Η γραφή των αριθμών στο Ιωνικό αλφαβητικό σύστημα αρίθμησης και η χρήση τους σε κείμενα αρχαίων Ελλήνων μαθηματικών (C)

(ΣΥΝΕΧΕΙΑ ΑΠΟ 30/05/16 ως παρακαμψις κυριου αρθρου)

Το εξηνταδικό σύστημα αρίθμησης

Το εξηνταδικό σύστημα αρίθμησης προέρχεται από τους Σουμέριους και στη συνέχεια από τους Βαβυλώνιους, δηλαδή χρονολογείται πριν από το 2100 π.Χ. Οι Βαβυλώνιοι σοφοί χρησιμοποιούσαν μόνο δύο σύμβολα (!) : τη «σφήνα» και το «καρφί». Τα άλλα 57 απαραίτητα σύμβολα (η σύλληψη του μηδενός ως αριθμού και η απεικόνισή του ως συμβόλου δεν είχε επέλθει ακόμα) τα δημιουργούν από αυτά τα δύο σύμβολα. Το 9, για παράδειγμα, συμβολιζόταν με ισάριθμες σφήνες σε τρεις τριάδες, ενώ ο αριθμός 19 γραφόταν σαν ένα καρφί και δεξιά του εννέα σφήνες σε τρεις τριάδες. To 59 με πέντε καρφιά και εννέα σφήνες. Φτάσαμε τώρα στη βάση του εξηνταδικού συστήματος. Το 60 ήταν πάλι ένα καρφί. Ο αριθμός 69 δεν γραφόταν με έξι σφήνες και εννέα καρφιά, αλλά με ένα καρφί του 60 και εννέα καρφιά του 1 δίπλα του. Πως το ξεχώριζαν λοιπόν; Όπως και εμείς σήμερα: το μόνο που διαφοροποιούσε αυτό το καρφί του 60 από τα διπλανά καρφιά του 1 ήταν η θέση του. Ένα πρόβλημα το οποίο παρουσιάζεται είναι ότι ο αριθμός 61 αναπαρίσταται με δύο «καρφιά», όπως και ο αριθμός 2. Για να το λύσουν αυτό το πρόβλημα οι Βαβυλώνιοι ένωναν τα «καρφιά» που αναπαριστάνουν μονάδες σε συμπλέγματα όπου το ένα «καρφί» ακουμπούσε το άλλο ώστε να αποτελούν ενιαίο σύμβολο.


Οι Βαβυλώνιοι έγραφαν με καλαμένια γραφίδα πάνω σε πίνακες από μαλακό πηλό, τους οποίους, στη συνέχεια, έψηναν ή ξέραιναν στον ήλιο. Ο λόγος επιλογής του συστήματος αυτού από τους Βαβυλώνιους εικάζεται ότι είναι η προσπάθεια ενοποίησης των διαφορετικών συστημάτων αρίθμησης, που υπήρχαν εκείνη την εποχή ( με βάση το 5 και το 12). Άλλοι έχουν την άποψη ότι η βάση 60 καθιερώθηκε από την αστρονομία και άλλοι ότι έχει επιλεγεί για βάση ο αριθμός 60 επειδή έχει πολλούς διαιρέτες. Ο Νόιγκεμπάουερ γράφει ότι μια πήλινη πλάκα με εκατοντάδες αστρονομικούς αριθμούς, γραμμένους στο εξηκονταδικό σύστημα, μπορούσε να έχει στο κάτω άκρο της μια σημείωση με το όνομα του γραφέα και την ημερομηνία γραφής, στο δεκαδικό, όμως, σύστημα.

Σημασία έχει ότι μέχρι σήμερα έχει επικρατήσει το εξηνταδικό σύστημα: για τη μέτρηση των γωνιών 1 ο (μοίρα) = 60’ (πρώτα λεπτά) και 1’ = 60’’ (δεύτερα λεπτά), του χρόνου 1 ώρα = 60’ (πρώτα λεπτά) και 1’ = 60’’ (δεύτερα λεπτά). Σφηνοειδής γραφή της αρχαίας Μεσοποταμίας Η σφηνοειδής γραφή υπολογίζεται ότι εφευρέθηκε από τους Σουμέριους στη Μεσοποταμία, όμως άγνωστο πότε. Κατόπιν τη δέχθηκαν και την τροποποίησαν οι Ασσύριοι, οι Βαβυλώνιοι, οι Ελαμίτες, οι Πέρσες, οι Χιττίτες… Διατηρήθηκε μέχρι το 1ον μ.Χ. αι. Η αποκρυπτογράφηση της έγινε από τους Γκρότεφεντ (1802) και Ρώλινσον (1846). Η σφηνοειδή γραφή ονομάστηκε έτσι, επειδή τα γράμματά της και οι αριθμοί είναι ως οι σφήνες (καρφιά) και όχι γραμμές ή εικόνες πραγμάτων, όπως συμβαίνει στις άλλες παλιές και κυρίως τις ιβδικές γραφές.


Το σύστημα αρίθμησης της ήταν εξηκονταδικό, με σύμβολα για τις δεκάδες. Παράδειγμα αριθμού στη σφηνοειδή γραφή: 47 = image


Στην εικόνα φαίνεται η σπουδαία πινακίδα Plimton 322 η οποία περιέχει πλήθος αριθμών γραμμένων με συστηματικό τρόπο.


Οι αριθμοί στο σύστημα των Μάγιας Το πιο αξιοθαύμαστο γεγονός είναι ότι οι Μάγια ήταν ο πρώτος λαός του κόσμου που χρησιμοποίησε τον αριθμό «0», αιώνες πριν χρησιμοποιηθεί στην Ευρώπη στην οποία τον έφεραν οι Άραβες, που τον είχαν μάθει από τους Ινδούς. Αυτή η αφηρημένη αντίληψη, τόσο συνηθισμένη για μας σήμερα, αποτελεί ένα μεγάλο κατόρθωμα και επέτρεψε στους Μάγια να φτιάξουν ένα από τα καλύτερα αριθμητικά συστήματα όλων των εποχών. Η χρήση του «0» και το εικοσαδικό σύστημα που χρησιμοποιούσαν (αντί δεκαδικό όπως το δικό μας), τους επέτρεπαν να κάνουν πολύπλοκους λογαριασμούς. Παρίσταναν τη μονάδα με μία τελεία (.) και την αξία 5 με ένα ραβδί (-). Τον αριθμό 0 τον αναπαρίσταναν μ’ ένα κοχύλι ή ένα λουλούδι. Σε κάποιες σημαντικές περιπτώσεις, αναπαρίσταναν τους αριθμούς με ανθρώπινα κεφάλια. Η γραφή των αριθμών μέχρι τον 19 γινόταν με «προσθετικό» τρόπο. Από εκεί και πέρα το σύστημα είχε βάση το 20. Π.χ. 74 = 3 x 20 + 14.


Οι αριθμοί γράφονταν σε στήλες που διαβάζονταν από κάτω προς τα πάνω. Με αυτό τον τρόπο, δημιουργούσαν ένα σύστημα «κατά θέσεις» ή τοποθέτησης για την σημειογραφία των αριθμών, που τους επέτρεπε να γράφουν μεγάλους αριθμούς. Στο δικό μας αριθμητικό σύστημα, τοποθετούμε τις δεκάδες αριστερά από τις μονάδες, πιο αριστερά τις εκατοντάδες, μετά τις χιλιάδες, κλπ. Με τον ίδιο τρόπο, οι Μάγια έγραφαν τις μονάδες (1 έως 19) στην κατώτερη σειρά, από πάνω τις εικοσάδες, πιο πάνω τις εικοσάδες εικοσάδων και ούτω καθ’ εξής. Το 0 το


χρησιμοποιούσαν με τον ίδιο τρόπο που το κάνουμε εμείς: σήμερα η τοποθέτηση ενός μηδενικού σημαίνει ότι πολλαπλασιάζουμε τη μονάδα επί 10 ή επί 100 ή επί 1000, σύμφωνα με το ποσό αριστερά γράφουμε το 0. Οι Μάγια πολλαπλασίαζαν επί 20 ή 200 ή 2000, σύμφωνα με το πόσο ψηλά το έγραφαν. Το σύστημα είναι σχεδόν ίδιο με το δεκαδικό και, οπωσδήποτε, πιο απλό από το Ρωμαϊκό σύστημα, όταν πρόκειται για μεγάλους αριθμούς και πολύπλοκους λογαριασμούς. Για παράδειγμα, το τέσσερα σχηματίζεται από τέσσερις τελείες, το επτά από μια παύλα και δύο τελείες, και το δεκαεννέα από τρείς παύλες και τέσσερις τελείες 3 x 5 + 4 x 1 = 19. Οι αριθμοί πάνω του 20 γράφονταν με την χρήση της θεσιακής σημειογραφίας, βάζοντας την μεγαλύτερη σε αξία μονάδα στο πάνω μέρος, για παράδειγμα:



Posted in SCIENCE=EPI-HISTEME | Tagged , , , , , , | 1 Comment


A)New Alzheimer’s Treatment Fully Restores Memory Function

Australian researchers have come up with a non-invasive ultrasound technology that clears the brain of neurotoxic amyloid plaques – structures that are responsible for memory loss and a decline in cognitive function in Alzheimer’s patients.

If a person has Alzheimer’s disease, it’s usually the result of a build-up of two types of lesions – amyloid plaques, and neurofibrillary tangles. Amyloid plaques sit between the neurons and end up as dense clusters of beta-amyloid molecules, a sticky type of protein that clumps together and forms plaques. 

Neurofibrillary tangles are found inside the neurons of the brain, and they’re caused by defective tau proteins that clump up into a thick, insoluble mass. This causes tiny filaments called microtubules to get all twisted, which disrupts the transportation of essential materials such as nutrients and organelles along them, just like when you twist up the vacuum cleaner tube.

As we don’t have any kind of vaccine or preventative measure for Alzheimer’s – a disease that affects 343,000 people in Australia, and 50 million worldwide – it’s been a race to figure out how best to treat it, starting with how to clear the build-up of defective beta-amyloid and tau proteins from a patient’s brain. Now a team from the Queensland Brain Institute (QBI) at the University of Queensland have come up with a pretty promising solution for removing the former.

Publishing in Science Translational Medicine, the team describes the technique as using a particular type of ultrasound called a focused therapeutic ultrasound, which non-invasively beams sound waves into the brain tissue. By oscillating super-fast, these sound waves are able to gently open up the blood-brain barrier, which is a layer that protects the brain against bacteria, and stimulate the brain’s microglial cells to activate. Microglial cells are basically waste-removal cells, so they’re able to clear out the toxic beta-amyloid clumps that are responsible for the worst symptoms of Alzheimer’s.

The team reports fully restoring the memory function of 75 percent of the mice they tested it on, with zero damage to the surrounding brain tissue. They found that the treated mice displayed improved performance in three memory tasks – a maze, a test to get them to recognise new objects, and one to get them to remember the places they should avoid.

“We’re extremely excited by this innovation of treating Alzheimer’s without using drug therapeutics,” one of the team, Jürgen Götz, said in a press release. “The word ‘breakthrough’ is often misused, but in this case I think this really does fundamentally change our understanding of how to treat this disease, and I foresee a great future for this approach.”

The team says they’re planning on starting trials with higher animal models, such as sheep, and hope to get their human trials underway in 2017. 

B)Robot reveals the inner workings of brain cells

New method offers automated way to record electrical activity inside neurons in the living brain

Gaining access to the inner workings of a neuron in the living brain offers a wealth of useful information: its patterns of electrical activity, its shape, even a profile of which genes are turned on at a given moment. However, achieving this entry is such a painstaking task that it is considered an art form; it is so difficult to learn that only a small number of labs in the world practice it.

But that could soon change: Researchers at MIT and the Georgia Institute of Technology have developed a way to automate the process of finding and recording information from neurons in the living brain. The researchers have shown that a robotic arm guided by a cell-detecting computer algorithm can identify and record from neurons in the living mouse brain with better accuracy and speed than a human experimenter.

The new automated process eliminates the need for months of training and provides long-sought information about living cells’ activities. Using this technique, scientists could classify the thousands of different types of cells in the brain, map how they connect to each other, and figure out how diseased cells differ from normal cells.

The project is a collaboration between the labs of Ed Boyden, associate professor of biological engineering and brain and cognitive sciences at MIT, and Craig Forest, an assistant professor in the George W. Woodruff School of Mechanical Engineering at Georgia Tech.

“Our team has been interdisciplinary from the beginning, and this has enabled us to bring the principles of precision machine design to bear upon the study of the living brain,” Forest says. His graduate student, Suhasa Kodandaramaiah, spent the past two years as a visiting student at MIT, and is the lead author of the study, which appears in the May 6 issue of Nature Methods.

The method could be particularly useful in studying brain disorders such as schizophrenia, Parkinson’s disease, autism and epilepsy, Boyden says. “In all these cases, a molecular description of a cell that is integrated with [its] electrical and circuit properties … has remained elusive,” says Boyden, who is a member of MIT’s Media Lab and McGovern Institute for Brain Research. “If we could really describe how diseases change molecules in specific cells within the living brain, it might enable better drug targets to be found.”

Kodandaramaiah, Boyden and Forest set out to automate a 30-year-old technique known as whole-cell patch clamping, which involves bringing a tiny hollow glass pipette in contact with the cell membrane of a neuron, then opening up a small pore in the membrane to record the electrical activity within the cell. This skill usually takes a graduate student or postdoc several months to learn.

Kodandaramaiah spent about four months learning the manual patch-clamp technique, giving him an appreciation for its difficulty. “When I got reasonably good at it, I could sense that even though it is an art form, it can be reduced to a set of stereotyped tasks and decisions that could be executed by a robot,” he says.

To that end, Kodandaramaiah and his colleagues built a robotic arm that lowers a glass pipette into the brain of an anesthetized mouse with micrometer accuracy. As it moves, the pipette monitors a property called electrical impedance — a measure of how difficult it is for electricity to flow out of the pipette. If there are no cells around, electricity flows and impedance is low. When the tip hits a cell, electricity can’t flow as well and impedance goes up.

The pipette takes two-micrometer steps, measuring impedance 10 times per second. Once it detects a cell, it can stop instantly, preventing it from poking through the membrane. “This is something a robot can do that a human can’t,” Boyden says.

Once the pipette finds a cell, it applies suction to form a seal with the cell’s membrane. Then, the electrode can break through the membrane to record the cell’s internal electrical activity. The robotic system can detect cells with 90 percent accuracy, and establish a connection with the detected cells about 40 percent of the time.

The researchers also showed that their method can be used to determine the shape of the cell by injecting a dye; they are now working on extracting a cell’s contents to read its genetic profile.

Development of the new technology was funded primarily by the National Institutes of Health, the National Science Foundation and the MIT Media Lab.

The researchers recently created a startup company, Neuromatic Devices, to commercialize the device.

The researchers are now working on scaling up the number of electrodes so they can record from multiple neurons at a time, potentially allowing them to determine how different parts of the brain are connected.

They are also working with collaborators to start classifying the thousands of types of neurons found in the brain. This “parts list” for the brain would identify neurons not only by their shape — which is the most common means of classification — but also by their electrical activity and genetic profile.

“If you really want to know what a neuron is, you can look at the shape, and you can look at how it fires. Then, if you pull out the genetic information, you can really know what’s going on,” Forest says. “Now you know everything. That’s the whole picture.”

Boyden says he believes this is just the beginning of using robotics in neuroscience to study living animals. A robot like this could potentially be used to infuse drugs at targeted points in the brain, or to deliver gene therapy vectors. He hopes it will also inspire neuroscientists to pursue other kinds of robotic automation — such as in optogenetics, the use of light to perturb targeted neural circuits and determine the causal role that neurons play in brain functions.

Neuroscience is one of the few areas of biology in which robots have yet to make a big impact, Boyden says. “The genome project was done by humans and a giant set of robots that would do all the genome sequencing. In directed evolution or in synthetic biology, robots do a lot of the molecular biology,” he says. “In other parts of biology, robots are essential.”

Other co-authors include MIT grad student Giovanni Talei Franzesi and MIT postdoc Brian Y. Chow.


C)MIT-Georgia Tech Robot Whole-Cell Patch Clamping (IMAGE)



Researchers at MIT and the Georgia Institute of Technology have developed a way to automate a process called whole-cell patch clamping, which involves bringing a tiny hollow glass pipette in contact with the cell membrane of a neuron, then opening up a small pore in the membrane to record the electrical activity within the cell.

Sputnik Animation and MIT McGovern Institute


Posted in SCIENCE=EPI-HISTEME | Tagged , , , , , , , | Leave a comment

Τι είναι η σκοτεινή ενέργεια;


  • Τι είναι η σκοτεινή ενέργεια;

Είναι αυτό που κάνει το σύμπαν να επιταχύνεται, αν πράγματι υπάρχει ένα «πράγμα» που το κάνει αυτό.

  • Και τι σημαίνει ότι το σύμπαν «επιταχύνεται»;

Κατ αρχάς, το σύμπαν επεκτείνεται: όπως βρήκε ο Hubble, οι απόμακροι γαλαξίες απομακρύνονται από εμάς με ταχύτητες που είναι περίπου ανάλογες με την απόστασή τους. «Επιτάχυνση» σημαίνει ότι οι ταχύτητες που απομακρύνονται μεταξύ τους οι γαλαξίες συνεχώς μεγαλώνουν. Οι γαλαξίες δηλαδή απομακρύνονται από εμάς με επιταχυνόμενο ρυθμό.

  • Δεν υπάρχει ένας πιο αφηρημένος και επιστημονικός τρόπος για να το πούμε;

Η σχετική απόσταση μεταξύ πολύ απομακρυσμένων γαλαξιών μπορεί να συνοψιστεί σε μία μόνο ποσότητα, που ονομάζεται «παράγοντας ή συντελεστής κλίμακας», που συχνά γράφεται ως  a(t) ή R(t). Ο συντελεστής κλίμακας είναι βασικά το «μέγεθος» του σύμπαντος, αν και δεν είναι πραγματικά το “μέγεθος” του γιατί το σύμπαν μπορεί να είναι απείρως μεγάλο. Για να το πούμε αλλιώς – με μεγαλύτερη ακρίβεια -, είναι το σχετικό μέγεθος του χώρου από στιγμή σε στιγμή. Η διαστολή του σύμπαντος είναι το γεγονός χάρις στο οποίο ο συντελεστής κλίμακας αυξάνεται με τον χρόνο. Η επιτάχυνση του σύμπαντος είναι το γεγονός που αυτός αυξάνεται συνεχώς με αυξανόμενο ρυθμό – η δεύτερη παράγωγος του είναι θετική, αν θέλουμε να το πούμε με μαθηματικό τρόπο.

  • Αυτό σημαίνει ότι η σταθερά του Hubble, που μετρά το ρυθμό διαστολής, αυξάνεται;

Όχι Η «σταθερά» Hubble  (ή «παράμετρος» Hubble, εάν θέλετε να αναγνωρίσουμε ότι αλλάζει με το χρόνο) χαρακτηρίζει τον ρυθμό διαστολής, αλλά δεν είναι απλά η παράγωγος του συντελεστή κλίμακας: είναι η παράγωγος διαιρεμένη με τον ίδιο τον συντελεστή κλίμακας. Γιατί; Διότι τότε είναι μια φυσικά μετρήσιμη ποσότητα, κι όχι κάτι που μπορεί να αλλάξει με την αλλαγή των συμβάσεων.

Αν το σύμπαν επιβραδυνόταν, η σταθερά του Hubble θα έπρεπε να μειώνεται. Αν η σταθερά του Hubble αυξάνεται, το Σύμπαν επιταχύνεται. Αλλά υπάρχει κι ένα ενδιάμεσο καθεστώς στο οποίο το Σύμπαν επιταχύνεται, αλλά η σταθερά του Hubble μειώνεται – και αυτό ακριβώς νομίζουμε ότι συμβαίνει! Η ταχύτητα των επιμέρους γαλαξιών αυξάνεται, αλλά χρειάζεται ολοένα και περισσότερος χρόνος για να διπλασιαστεί το σύμπαν σε μέγεθος.

Ας το πούμε με έναν άλλο τρόπο: Ο νόμος του Hubble αφορά την ταχύτητα vενός γαλαξία σε απόσταση d, όπου v = H*d. Η ταχύτητα μπορεί να αυξηθεί ακόμη και αν η παράμετρος του Hubble μειώνεται, εφ ‘όσον όμως μειώνεται πιο αργά από ό,τι αυξάνει η απόσταση.

  • Μήπως οι αστρονόμοι περιμένουν ένα δισεκατομμύριο χρόνια και να μετρήσουν τη ταχύτητα των γαλαξιών και πάλι;

Όχι, μετράμε τη ταχύτητα των γαλαξιών που είναι πολύ μακριά. Επειδή το φως ταξιδεύει σε σταθερή ταχύτητα, εσείς στην πραγματικότητα κοιτάτε στο μακρινό παρελθόν. Η ανακατασκευή του ιστορικού για το πώς άλλαξαν οι ταχύτητες από το παρελθόν, μας αποκαλύπτει ότι το Σύμπαν επιταχύνεται.

  • Πώς θα μετρήσουμε την απόσταση έως τους πολύ μακρινούς γαλαξίες;

Δεν είναι εύκολο. Η πιο ισχυρή μέθοδος είναι να χρησιμοποιήσετε ένα «πρότυπο κερί» – κάποιο αντικείμενο που να είναι αρκετά φωτεινό για να το δείτε από μεγάλη απόσταση, και των οποίων η εγγενής φωτεινότητα είναι γνωστή. Στη συνέχεια, μπορείτε να υπολογίσετε την απόσταση απλά μετρώντας πόσο φωτεινό είναι στην πραγματικότητα: όσο πιο εξασθενημένο τόσο πιο μακριά είναι.

Δυστυχώς, δεν υπάρχουν πρότυπα κεριά.

  • Τότε τι κάνουν οι αστρονόμοι;

Ευτυχώς όμως έχουμε το επόμενο καλύτερο πράγμα: τα κανονικοποιημένα κεριά. Ένα συγκεκριμένο είδος σουπερνόβα, του τύπου Ia, είναι πολύ φωτεινό και περίπου – αλλά όχι εντελώς με την ίδια φωτεινότητα. Ευτυχώς, στη δεκαετία του 1990 ο Mark Phillips ανακάλυψε μια αξιοσημείωτη σχέση μεταξύ της εγγενούς φωτεινότητας και του χρόνου που χρειάζεται μια σουπερνόβα για να μειωθεί, αφού έφθασε στα υψηλότερα επίπεδα φωτεινότητας. Ως εκ τούτου, αν μετρήσουμε την φωτεινότητα, καθώς μειώνεται με το πέρασμα του χρόνου, μπορούμε να κάνουμε διορθώσεις για τη διαφορά αυτή, κατασκευάζοντας ένα καθολικό μέτρο της φωτεινότητας που μπορεί να χρησιμοποιηθεί για τον προσδιορισμό των αποστάσεων.

  • Γιατί οι σουπερνόβες τύπου Ia είναι κανονικοποιημένα κεριά;

Δεν είμαστε εντελώς σίγουροι – ως επί το πλείστον είναι μια εμπειρική σχέση. Αλλά έχουμε μια καλή ιδέα: πιστεύουμε ότι οι σουπερνόβες τύπου IA είναι λευκά άστρα νάνοι, που έχουν συσσωρεύσει ύλη από άλλα άστρα γύρω τους μέχρι να φθάσουν το όριο Chandrasekhar και να εκραγούν. Επειδή το όριο αυτό είναι βασικά το ίδιο παντού στο σύμπαν, γι αυτό και δεν αποτελεί έκπληξη το γεγονός ότι οι σουπερνόβες έχουν παρόμοια φωτεινότητα Οι αποκλίσεις πιθανώς να οφείλονται σε διαφορές στη σύνθεση.

  • Αλλά πώς ξέρετε πότε μία σουπερνόβα πρόκειται να εκραγεί;

Δεν χρειάζεται. Είναι σπάνιο, ίσως μία φορά ανά αιώνα, σε ένα τυπικό γαλαξία. Έτσι αυτό που κάνετε είναι να βλέπετε πολλούς, πολλούς γαλαξίες με κάμερες ευρέως πεδίου. Ειδικότερα συγκρίνετε μια εικόνα του ουρανού που τραβήχτηκε σε μία στιγμή με μία άλλη που λήφθηκε σε λίγες εβδομάδες αργότερα – «μερικές εβδομάδες» είναι περίπου ο χρόνος ανάμεσα σε δύο νέα φεγγάρια (όπου ο ουρανός είναι πιο σκοτεινός), και συμπτωματικά ο χρόνος που χρειάζεται ένα σουπερνόβα για να φτάσει στη μέγιστη φωτεινότητα. Στη συνέχεια χρησιμοποιούν τους υπολογιστές για να συγκρίνουν τις εικόνες και να αναζητήσουν νέα φωτεινά σημεία. Ακολούθως, μπορούν να εξετάσουν τα φωτεινά σημεία για να ελέγξουν αν είναι πράγματι τύπου Ia σουπερνόβα. Προφανώς αυτή έρευνα είναι πολύ δύσκολη και δεν θα είναι καν νοητή αν δεν υπήρχε μια σειρά από σχετικά πρόσφατες τεχνολογικές εξελίξεις – οι κάμερες CCD καθώς και γιγάντια τηλεσκόπια. Αυτές τις μέρες μπορούμε να βγούμε έξω και να είστε σίγουροι ότι θα συλλέξουμε σουπερνόβες κατά δεκάδες – αλλά όταν ο Perlmutter και η ομάδα του ξεκίνησαν, αυτό δεν ήταν και πολύ εύκολο.

  • Και τι βρήκαν όταν το έκαναν αυτό;

Οι περισσότεροι (σχεδόν όλοι) οι αστρονόμοι ανέμεναν να διαπιστώσουν ότι το σύμπαν επιβραδύνονταν – οι γαλαξίες έλκουν ο ένας τον άλλο με τα βαρυτικά πεδία τους, τα οποία θα πρέπει να καθυστερούν την όλη διαστολή. (Στην πραγματικότητα πολλοί αστρονόμοι απλά νόμιζαν ότι θα εξασθένιζε εντελώς, αλλά αυτό είναι μια άλλη ιστορία). Όμως αυτό που πραγματικά διαπιστώθηκε ήταν ότι το φως των μακρινών σουπερνόβα ήταν πιο εξασθενημένο από όσο αναμενόταν – ένα σημάδι ότι είναι πιο μακριά από ό,τι είχαμε προβλέψει, που με τη σειρά του σημαίνει ότι το σύμπαν έχει επιταχυνθεί .

  • Γιατί οι κοσμολόγοι αποδέχθηκαν αυτό το αποτέλεσμα τόσο γρήγορα;

Ακόμη και πριν από το 1998 υπήρχαν ανακοινώσεις, στις οποίες φαινόταν ότι κάτι περίεργο συνέβαινε με το σύμπαν. Φαινόταν ότι το σύμπαν ήταν νεότερο από την ηλικία των παλαιότερων αστεριών του. Φαινόταν δε να μην υπήρχε και τόση ύλη, όπως οι θεωρητικοί είχαν προβλέψει. Και υπήρχε λιγότερη δομή στις μεγάλες κλίμακες από τις προσδοκώμενες. Η ανακάλυψη της σκοτεινής ενέργειας έλυσε όλα αυτά τα προβλήματα με τη μία. Διάλυσε τα πάντα. Έτσι οι άνθρωποι δικαιωματικά ήταν επιφυλακτικοί, αλλά από τη στιγμή που έγινε αυτή η εκπληκτική παρατήρηση, το σύμπαν γίνεται ξαφνικά πολύ πιο λογικό.

  • Πώς ξέρουμε ότι αυτή η σουπερνόβα δεν ήταν εξασθενημένη γιατί κάτι απέκρυπτε το φως τους να έρθει σε μας εδώ, ή απλώς επειδή τα πράγματα ήταν διαφορετικά στο μακρινό παρελθόν;

Είναι μια σωστή ερώτηση, και ένας λόγος που οι δύο ομάδες παρατήρησης των σουπερνόβα εργάστηκαν τόσο σκληρά για να τους αναλύσουν. Ποτέ δεν μπορεί κάποιος να είναι 100% σίγουρος, αλλά σιγά σιγά μπορεί η άποψη για την επιτάχυνση να κερδίζει πόντους. Για παράδειγμα, οι αστρονόμοι γνωρίζουν εδώ και καιρό ότι κάποιο ‘θολό’ υλικό τείνει να σκεδάζει το μπλε φως πιο εύκολα από το κόκκινο. Κι αυτό το φαινόμενο οδηγεί σε μια «ερυθρότητα» των άστρων, που βρίσκονται πίσω από τα νέφη αερίου και σκόνης. Μπορείτε λοιπόν να ψάξετε για την ερυθρότητα στην περίπτωση μας, αλλά σε αυτά τα σουπερνόβα δεν φαίνεται να είναι σημαντική. Και είναι πολύ κρίσιμο ότι έχουμε πολλές ανεξάρτητες γραμμές αποδεικτικών στοιχείων, που φτάνουν στο ίδιο συμπέρασμα με το αρχικό: η άποψη για την εξασθένιση των σουπερνόβα είναι όντως στέρεα.

  • Υπάρχουν πραγματικά ανεξάρτητα στοιχεία για τη σκοτεινή ενέργεια;

Ω ναι. Ένα απλό επιχείρημα είναι η «αφαίρεση»: το κοσμικό υπόβαθρο μικροκυμάτων μετράει το συνολικό ποσό της ενέργειας (συμπεριλαμβανομένης και της ύλης) στο σύμπαν. Κάποιες μετρήσεις των τοπικών γαλαξιών και των σμηνών μας δίνουν το συνολικό ποσό της ύλης. Η τελευταία (ορατή και αόρατη ύλη) αποδεικνύεται ότι είναι περίπου το 27%, και το υπόλοιπο 73% με τη μορφή κάποιου αόρατου υλικού που δεν όμως ύλη: είναι η «σκοτεινή ενέργεια.» Αυτό το ποσοστό είναι το σωστό για να εξηγήσει την επιτάχυνση του σύμπαντος. Άλλες ‘γραμμές’ αποδεικτικών στοιχείων που προέρχονται από βαρυονικές ακουστικές ταλαντώσεις (κύματα ή ρυτιδώσεις σε μεγάλης κλίμακας δομή των οποίων το μέτρο μας βοηθά να μετρήσουμε την ιστορία διαστολής του σύμπαντος) καθώς και την εξέλιξη της δομής καθώς το σύμπαν διαστέλλεται.

  • Εντάξει, όλα αυτά: τι είναι η σκοτεινή ενέργεια;

Χαίρομαι που το ρωτάτε! Η σκοτεινή ενέργεια έχει τρεις κρίσιμες ιδιότητες. Κατ ‘αρχάς, είναι σκοτεινή: εμείς δεν την βλέπουμε, και στο βαθμό που μπορούμε να την παρατηρήσουμε δεν αλληλεπιδρά με την ύλη. (Ίσως το κάνει, αλλά δεν πέφτει στην αντίληψη μας να εντοπιστεί προς το παρόν). Δεύτερον, είναι ομαλά κατανεμημένη: δεν μειώνεται στους γαλαξίες και τα σμήνη, αλλιώς θα έπρεπε να το βρούμε από τη μελέτη της δυναμικής των εν λόγω αντικειμένων. Τρίτον, είναι σταθερή: η πυκνότητα της σκοτεινής ενέργειας (ποσότητα ενέργειας ανά κυβικό έτος φωτός) παραμένει σχεδόν σταθερή καθώς το σύμπαν διαστέλλεται. Δεν αραιώνεται όπως γίνεται με την ύλη.

Αυτές οι τελευταίες δύο ιδιότητες (ομαλή και σταθερή) είναι ο λόγος που την ονομάζουμε «ενέργεια» και όχι «ύλη.» Η σκοτεινή ενέργεια δεν φαίνεται να δρα όπως τα σωματίδια, τα οποία έχουν τοπική δυναμική και αραιώνουν καθώς το σύμπαν διαστέλλεται. Η σκοτεινή ενέργεια είναι κάτι άλλο.

  • Αυτή είναι μια ωραία γενική ιστορία. Τι θα μπορούσε να είναι συγκεκριμένα η σκοτεινή ενέργεια;

Οι περισσότεροι πιστεύουν στην απλούστερη άποψη: είναι η «κοσμολογική σταθερά«, ή η «ενέργεια του κενού”. Εφόσον γνωρίζουμε ότι η σκοτεινή ενέργεια είναι αρκετά ομαλή και αρκετά σταθερή, πράγματι η ενέργεια του κενού είναι απόλυτα ομαλή και ακριβώς σταθερή. Αυτή είναι η ενέργεια του κενού: μία σταθερή ποσότητα ενέργειας που αντιστοιχεί σε κάθε μικροσκοπική περιοχή του διαστήματος, δεν αλλάζει από τόπο σε τόπο ή από χρόνο με χρόνο. Περίπου το ένα εκατοστό του εκατομμυριοστού του ενός έργιου (1 erg = 10−7 J) ανά κυβικό εκατοστό, εάν θέλετε να μάθετε το μέγεθος της.

  • Είναι η ενέργεια του κενού πραγματικά η ίδια με την κοσμολογική σταθερά;

Ναι. Μην πιστεύετε τους ισχυρισμούς για το αντίθετο. Όταν ο Αϊνστάιν ανακάλυψε για πρώτη φορά την ιδέα αυτή, δεν την είχε σκεφτεί ως «ενέργεια», την σκέφτηκε ως μία τροποποίηση του τρόπου που ο χωροχρόνος καμπυλώνεται αλληλεπιδρώντας με την ενέργεια. Αλλά αποδεικνύεται ότι είναι ακριβώς το ίδιο πράγμα. (Αν κάποιος δεν θέλει να το πιστέψει, να τους ρωτήσουμε πώς θα διακρίνουν παρατηρησιακά τις δύο έννοιες.)

  • Μήπως η ενέργεια του κενού προέρχεται από τις κβαντικές διακυμάνσεις;

Όχι ακριβώς. Υπάρχουν πολλά διαφορετικά πράγματα που μπορούν να συμβάλουν στην ενέργεια του κενού χώρου, και ορισμένα από αυτά είναι εντελώς κλασικά (καμία σχέση δηλαδή με κβαντικές διακυμάνσεις). Αλλά πέρα από την κλασική συμβολή στην ενέργεια του κενού, υπάρχουν και οι κβαντικές διακυμάνσεις πιο πάνω από αυτήν. Αυτές λοιπόν οι διακυμάνσεις είναι πολύ μεγάλες, και αυτό οδηγεί στο πρόβλημα της κοσμολογικής σταθεράς.

  • Ποιό είναι το πρόβλημα της κοσμολογικής σταθεράς;

Αν το μόνο που ήξερα ήταν κλασική μηχανική, τότε η κοσμολογική σταθερά θα ήταν απλά ένας αριθμός – δεν υπάρχει κανένας λόγος για να είναι μικρός ή μεγάλος, θετικός ή αρνητικός. Απλώς θα μετρούσε αυτό ακριβώς, τελεία και παύλα.

Όμως ο κόσμος μας δεν είναι κλασικός, είναι κβαντικός. Στην κβαντική θεωρία πεδίου αναμένουμε ότι οι κλασικές ποσότητες λαμβάνουν «κβαντικές διορθώσεις.» Στην περίπτωση της ενέργειας του κενού, οι διορθώσεις αυτές έρχονται με τη μορφή της ενέργειας των εικονικών σωματιδίων, που υφίστανται διακυμάνσεις στο κενό του άδειου χώρου.

Μπορούμε να προσθέσουμε τις ενέργειες που αναμένουμε σε αυτές τις διακυμάνσεις του κενού και η απάντηση είναι δυστυχώς ότι η ενέργεια του κενού είναι άπειρη. Προφανώς πρόκειται περί τεράστιου λάθους, αλλά υποψιαζόμαστε ότι υπολογίσαμε λάθος. Ειδικότερα, αυτός ο πρόχειρος υπολογισμός περιλαμβάνει διακυμάνσεις σε όλα τα μεγέθη, συμπεριλαμβανομένων  και μήκη κύματος μικρότερα από την απόσταση Planck στο χωροχρόνο, που χάνει μάλλον την εννοιολογική εγκυρότητα του. Αν, αντίθετα, περιλαμβάνει μόνο μήκη κύματος που είναι κοντάστο μήκος Planck ή και περισσότερο, τότε θα έχουμε μια συγκεκριμένη εκτίμηση για την τιμή της κοσμολογικής σταθεράς.

Η απάντηση είναι: 10120 φορές μεγαλύτερη ενέργεια από αυτή που στην πραγματικότητα παρατηρούμε. Αυτή η διαφορά αποτελεί και πρόβλημα της κοσμολογικής σταθεράς.

  • Γιατί είναι τόσο μικρή η κοσμολογική σταθερά;

Κανείς δεν ξέρει. Πριν έρθει η ανακάλυψη από τις σουπερνόβα, πολλοί φυσικοί υπέθεταν ότι υπήρχε κάποια μυστική συμμετρία ή κάποιος δυναμικός μηχανισμός που αναγκάζει την κοσμολογική σταθερά να είναι ακριβώς μηδέν, επειδή σίγουρα ξέραμε ότι αυτή ήταν πολύ μικρότερη από ότι οι εκτιμήσεις μας έδειχναν. Τώρα βρισκόμαστε αντιμέτωποι με δύο εξηγήσεις γιατί να είναι μικρή και γιατί δεν είναι εντελώς μηδέν. Υπάρχει και κάτι άλλο: το πρόβλημα της σύμπτωσης, που είναι το εξής: γιατί η πυκνότητα της σκοτεινής ενέργειας είναι της ίδιας τάξης μεγέθους με την πυκνότητα της ύλης.

Κι εδώ τα πράγματα είναι άσχημα: αυτή τη στιγμή, η καλύτερη θεωρητική εξήγηση για την τιμή της κοσμολογικής σταθεράς είναι η ανθρωπική αρχή. Αν εμείς ζούμε σε ένα πολυσύμπαν, όπου διαφορετικές περιοχές του έχουν πολύ διαφορετικές τιμές της ενέργειας του κενού, εύλογα μπορεί κανείς να υποστηρίξει ότι η ζωή μπορεί να υπάρξει μόνο (για να κάνει παρατηρήσεις και να κερδίζει βραβεία Νόμπελ) στις περιοχές όπου η ενέργεια του κενού είναι πολύ μικρότερη από αυτήν που υπολογίζουμε.

Αν αυτή ήταν μεγαλύτερη και θετική, οι γαλαξίες (ακόμη και τα άτομα) θα ήταν διαλυμένοι. Αν ήταν μεγαλύτερη και αρνητική, το σύμπαν θα είχε καταρρεύσει γρήγορα. Πράγματι, μπορούμε να εκτιμήσουμε, κατά προσέγγιση, ότι θα πρέπει να μετρούν οι τυπικοί παρατηρητές σε μια τέτοια κατάσταση. Η απάντηση είναι αρκετά κοντά στην παρατηρούμενη τιμή. Ο Steven Weinberg έκανε στην πράξη αυτή την πρόβλεψη, το 1988, πολύ πριν ανακαλυφθεί η επιτάχυνση του σύμπαντος. Υπάρχουν πολλά προβλήματα με αυτόν τον υπολογισμό, ειδικά όταν αρχίσουμε να μιλάμε για «τυπικούς παρατηρητές» ακόμα και αν είστε πρόθυμοι να πιστέψετε ότι μπορεί να υπάρχει ένα πολυσύμπαν.

Αυτό που θα θέλαμε πραγματικά είναι μια απλή φόρμουλα που να προβλέπει την κοσμολογική σταθερά μια για πάντα, σε συνάρτηση με άλλες μετρήσιμες σταθερές της φύσης. Δεν έχουμε βρει κάτι ακόμα, αλλά προσπαθούμε. Κάποια σενάρια που έχουν προταθεί κάνουν χρήση της κβαντικής βαρύτητας, επιπλέον διαστάσεις, σκουληκότρυπες, υπερσυμμετρία, μη τοπικότητα, και άλλες ενδιαφέρουσες ιδέες αλλά παράξενες ιδέες. Ακόμα όμως δεν έχει αποδειχθεί τίποτα.

  • Η πρόοδος στη θεωρία χορδών επηρεάστηκε ποτέ από κανένα πειραματικό αποτέλεσμα;

Ναι: από την επιτάχυνση του σύμπαντος. Προηγουμένως, οι θεωρητικοί των χορδών (όπως κι όλοι οι άλλοι), θεώρησαν σαν σωστό να εξηγήσουν ένα σύμπαν με μηδενική ενέργεια του κενού. Κάποτε που υπήρχε μια ευκαιρία ώστε η ενέργεια του κενού να μην είναι μηδέν,  οι θεωρητικοί ρωτούσαν αν το μη μηδενικής ενέργειας κενό ήταν εύκολο να ταιριάξει στη θεωρία των χορδών. Η απάντηση ήταν: δεν είναι αυτό δύσκολο. Το πρόβλημα είναι ότι εάν μπορείτε να βρείτε μια λύση, μπορείτε να βρείτε και ένα παράλογα μεγάλο αριθμό λύσεων. Αυτό είναι το τοπίο στη θεωρία των χορδών, η οποία φαίνεται να σκοτώνει τις ελπίδες για μία μοναδική λύση, που θα μπορούσε να εξηγήσει τον πραγματικό κόσμο. Αυτό βεβαίως θα ήταν ωραίο, αλλά η επιστήμη παίρνει ό,τι η φύση έχει να προσφέρει.

  • Ποιο είναι το πρόβλημα της σύμπτωσης;

Η ύλη αραιώνει συνεχώς καθώς το σύμπαν διαστέλλεται, ενώ κατά περίεργο τρόπο η πυκνότητα της σκοτεινής ενέργειας παραμένει λίγο πολύ σταθερή. Ως εκ τούτου, η σχετική πυκνότητα της σκοτεινής ενέργειας και της ύλης αλλάζει σημαντικά με την πάροδο του χρόνου. Στο παρελθόν, υπήρχε πολύ περισσότερη ύλη (και ακτινοβολία). Στο μέλλον, η σκοτεινή ενέργεια θα κυριαρχήσει πλήρως. Αλλά σήμερα, αυτές είναι περίπου ίσες, με βάση τα κοσμολογικά στάνταρτ. Γιατί είμαστε τόσο τυχεροί που γεννηθήκαμε σε μια εποχή που η σκοτεινή ενέργεια είναι αρκετά μεγάλη για να είναι ανιχνεύσιμη, αλλά και αρκετά μικρή ώστε να μπορεί να βρεθεί; Είτε αυτό είναι απλά μια σύμπτωση (που θα μπορούσε να είναι αλήθεια), ή υπάρχει κάτι το ιδιαίτερο για την εποχή στην οποία ζούμε. Αυτός είναι κι ένας από τους λόγους που οι άνθρωποι είναι πρόθυμοι να λάβουν σοβαρά τα επιχειρήματα της ανθρωπικής αρχής. Μιλάμε για ένα παράλογο σύμπαν εδώ.

  • Αν η σκοτεινή ενέργεια έχει μια σταθερή πυκνότητα, αλλά ο χώρος επεκτείνεται, δεν σημαίνει ότι η ενέργεια αυτή δεν διατηρείται;

Ναι. Είναι σωστό.

  • Ποια είναι η διαφορά μεταξύ «σκοτεινής ενέργειας» και «ενέργειας του κενού»;

«Σκοτεινή ενέργεια» είναι το γενικό φαινόμενο της ομαλής, διαρκούς ουσίας που κάνει το σύμπαν να επιταχύνεται. «Ενέργεια του κενού» είναι μια συγκεκριμένη υποψήφια λύση για τη σκοτεινή ενέργεια, δηλαδή κάτι που είναι απολύτως ομαλή και απόλυτα σταθερό.

  • Μήπως, υπάρχουν και άλλοι υποψήφιοι για την σκοτεινή ενέργεια;

Ναι. Το μόνο που χρειάζεστε είναι κάτι που να είναι πολύ ομαλό και συνεχές. Βεβαίως δεν είναι εύκολο να βρούμε ουσίες νε τέτοιες ιδιότητες. Η απλούστερη όμως και καλύτερη ιδέα είναι η πεμπτουσία, η οποία είναι απλώς ένα βαθμωτό πεδίο που γεμίζει το σύμπαν και αλλάζει πολύ αργά καθώς περνά ο χρόνος.

  • Είναι η ιδέα της πεμπτουσίας αρκετά φυσική;

Όχι. Υπήρχε κάποτε η ελπίδα ότι μια δυναμική ουσία που άλλαζε με τον καιρό (όπως η πεμπτουσία) αντί μιας απλής σταθερής ενέργειας (όπως η ενέργεια του κενού), θα μπορούσε να καταλήξει σε κάποια έξυπνη εξήγηση για το πώς η σκοτεινή ενέργεια είναι τόσο μικρή, και ίσως ακόμη και να εξηγήσει το πρόβλημα της σύμπτωσης. Καμία από αυτές τις ελπίδες δεν έχει περάσει τα τεστ.

Αντιθέτως, έχει προσθέσει νέα προβλήματα. Σύμφωνα με την κβαντική θεωρία πεδίου, τα βαθμωτά πεδία πρέπει να είναι βαριά. Αλλά για να είναι η πεμπτουσία η σκοτεινή ενέργεια, τότε θα πρέπει να είναι πάρα πολύ ελαφρύ το βαθμωτό πεδίο της, με μάζα ίσως και 10-30 φορές μικρότερη από τη μάζα του ελαφρότερου νετρίνο. (Αλλά όχι μηδέν!). Το πρόβλημα λοιπόν εδώ είναι ότι ένα ελαφρύ βαθμωτό πεδίο θα πρέπει να αλληλεπιδρά με τη συνηθισμένη ύλη. Ακόμα και αν η αλληλεπίδραση είναι αρκετά ασθενής, θα πρέπει ωστόσο να είναι αρκετά μεγάλη για να ανιχνευτεί – και ακόμα δεν έχει εντοπιστεί. Ίσως, κάποια καλύτερα πειράματα θα βρουν μια «δύναμη πεμπτουσίας,» και τότε θα καταλάβουμε τη σκοτεινή ενέργεια, μια για πάντα.

  • Πώς αλλιώς μπορούμε να δοκιμάσουμε την ιδέα της πεμπτουσίας;

Ο πιο άμεσος τρόπος είναι και πάλι με τις σουπερνόβα. Γενικότερα να φτιάξουμε έναν χάρτη της διαστολής του σύμπαντος με τόση ακρίβεια ώστε να μπορούμε να πούμε εάν η πυκνότητα της σκοτεινής ενέργειας αλλάζει με το χρόνο. Αυτό σημαίνει να μετρηθεί η παράμετρος w της καταστατικής εξίσωσης της σκοτεινής ενέργειας. Αν η w είναι ακριβώς –1, τότε η σκοτεινή ενέργεια είναι ακριβώς σταθερή – η ενέργεια του κενού. Αν όμως η w είναι ελαφρώς μεγαλύτερη από -1, η ενεργειακή πυκνότητα σταδιακά θα μειώνεται. Αν είναι ελαφρώς μικρότερη (π.χ. -1,1), η πυκνότητα της σκοτεινής ενέργειας στην πραγματικότητα αυξάνεται με το χρόνο.

  • Τι είναι το w;

Έχει ονομαστεί παράμετρος της καταστατικής εξίσωσης της σκοτεινής ενέργειας, διότι συσχετίζει την πίεση p της σκοτεινής ενέργειας με την ενεργειακή της πυκνότητα ρ, μέσω της σχέσης w = p/ρ. Φυσικά κανείς δεν μπορεί να μετρήσει την πίεση της σκοτεινής ενέργειας, οπότε αυτός είναι ένας ελαφρώς ανόητος ορισμός, αλλά είναι ένα ‘ιστορικό ατύχημα’. Αυτό που πραγματικά έχει σημασία είναι το πώς η σκοτεινή ενέργεια εξελίσσεται με το χρόνο, αλλά στη γενική σχετικότητα αυτό σχετίζεται άμεσα με την παράμετρο της καταστατικής εξίσωσης.

  • Μήπως αυτό σημαίνει ότι η σκοτεινή ενέργεια έχει αρνητική πίεση;

Ναι, πράγματι. Η αρνητική πίεση συμβαίνει όταν μια ουσία έλκει παρά ωθεί – σαν ένα υπερ-εκτατό ελατήριο που έλκει τα δύο του άκρα. Αυτή συχνά ονομάζεται «τάση». Γι αυτό είναι καλύτερη η ονομασία «ομαλή τάση» από την «σκοτεινή ενέργεια», αλλά δεν έπιασε.

  • Γιατί η σκοτεινή ενέργεια κάνει το σύμπαν να επιταχύνεται;

Επειδή είναι συνεχής (διαρκής). Ο Αϊνστάιν λέει ότι η ενέργεια αναγκάζει τον χωροχρόνο να καμπυλώνεται. Στην περίπτωση του σύμπαντος, αυτή η καμπυλότητα έρχεται σε δύο μορφές: την καμπυλότητα του ίδιου του χώρου (σε αντίθεση με τον χωροχρόνο), και την διαστολή του σύμπαντος. Έχουμε μετρήσει την καμπυλότητα του χώρου, και την βρήκαμε ουσιαστικά μηδενική. Έτσι, η διαρκής ενέργεια οδηγεί σε ένα διαρκή ρυθμό διαστολής. Συγκεκριμένα, η παράμετρος του Hubble είναι κοντά στο να είναι σταθερή, και στο νόμο του Hubble (v = H*d) αν η H είναι περίπου σταθερή, η ταχύτητα v θα αυξάνεται καθώς η απόσταση αυξάνεται. Έτσι προκύπτει η επιτάχυνση.

  • Αν η αρνητική πίεση είναι σαν τάση, γιατί δεν έλκει τα σώματα παρά τα ωθεί μακριά το ένα από το άλλο

Μερικές φορές θα διαβάσετε ότι η «σκοτεινή ενέργεια αναγκάζει το σύμπαν να επιταχύνει επειδή έχει αρνητική πίεση.» Τα λόγια αυτά δίνουν την ψευδαίσθηση της κατανόησης και όχι την πραγματική κατανόηση. Επίσης λέγεται ότι “η δύναμη της βαρύτητας εξαρτάται από την πυκνότητα συν τρεις φορές την πίεση, οπότε αν η πίεση είναι αντίθετη με την πυκνότητα, η βαρύτητα είναι απωστική.» Φαίνεται λογικό, εκτός από το ότι κανείς δεν θα σας εξηγήσει γιατί η βαρύτητα εξαρτάται από την πυκνότητα συν τρεις φορές την πίεση. Και δεν είναι στην πραγματικότητα η “δύναμη της βαρύτητας» που εξαρτάται από αυτό. Είναι η τοπική διαστολή του χώρου.

Η ερώτηση “γιατί η τάση δεν έλκει τα πράγματα μαζί;» είναι απολύτως έγκυρη. Η απάντηση είναι: επειδή η σκοτεινή ενέργεια δεν ασκεί πραγματικά καμιά ώθηση ή έλξη σε τίποτα. Γιατί αφενός δεν αλληλεπιδρά άμεσα με τη συνηθισμένη ύλη, και αφετέρου είναι εξίσου κατανεμημένη μέσα στο χώρο, έτσι ώστε οποιαδήποτε έλξη προς τη μία κατεύθυνση, θα εξισορροπείται ακριβώς από την έλξη από την αντίθετη κατεύθυνση. Είναι λοιπόν η έμμεση επίδραση της σκοτεινής ενέργειας, μέσω της βαρύτητας και όχι μέσω άμεσης αλληλεπίδρασης, που κάνει το σύμπαν να επιταχύνεται.

Ο πραγματικός λόγος που η σκοτεινή ενέργεια αναγκάζει το σύμπαν να επιταχύνεται είναι γιατί είναι συνεχής.

  • Είναι η σκοτεινή ενέργεια κάτι σαν την αντιβαρύτητα;

Όχι, η σκοτεινή ενέργεια δεν είναι «αντιβαρύτητα», είναι ακριβώς βαρύτητα. Φανταστείτε έναν κόσμο με μηδενική σκοτεινή ενέργεια, εκτός από δύο σταγόνες γεμάτες από σκοτεινή ενέργεια. Οι δύο σταγόνες δεν θα απωθούνται, θα έλκονται. Όμως, στο εσωτερικό αυτών των σταγόνων, η σκοτεινή ενέργεια θα απωθήσει τον χώρο για να διασταλεί. Αυτό είναι απλώς το θαύμα της μη-Ευκλείδειας γεωμετρίας.

  • Είναι μια νέα απωστική δύναμη;

Όχι Είναι απλά ένα νέο (ή τουλάχιστον διαφορετικό) είδος πηγής για μια παλιά δύναμη – τη βαρύτητα. Δεν πρόκειται για νέες δυνάμεις της φύσης.

  • Ποια είναι η διαφορά μεταξύ σκοτεινής ενέργειας και σκοτεινής ύλης;

Είναι εντελώς διαφορετικά. Η σκοτεινή ύλη είναι ένα είδος σωματιδίου, μόνο που δεν το έχουμε ανακαλύψει ακόμη. Ξέρουμε ότι είναι εκεί, διότι έχουμε παρατηρήσει την βαρυτική επιρροή της σε διάφορους χώρους (γαλαξίες, σμήνη, μεγάλης κλίμακας δομή, μικροκυματική ακτινοβολία υποβάθρου). Είναι περίπου το 23% του σύμπαντος. Αλλά είναι βασικά η καλή ντεμοντέ «ύλη», απλά είναι η ύλη που δεν μπορούμε να ανιχνεύσει άμεσα (ακόμα). Αυτή συσπειρώνεται κάτω από την επίδραση της βαρύτητας, και αραιώνει καθώς το σύμπαν διαστέλλεται. Η σκοτεινή ενέργεια, εν τω μεταξύ, δεν ‘συσπειρώνεται’, ούτε αραιώνει. Δεν είναι κατασκευασμένο από σωματίδια, είναι κάποιο εντελώς διαφορετικό είδος κατάστασης.

  • Είναι πιθανό να μην υπάρχει σκοτεινή ενέργεια, αλλά απλά μια τροποποίηση της βαρύτητας σε κοσμολογικές κλίμακες;

Είναι πιθανόν, σίγουρα. Υπάρχουν τουλάχιστον δύο δημοφιλείς προσεγγίσεις για αυτή την ιδέα: η f(R) βαρύτητα, που o Mark Trodden και ο Sean Caroll βοήθησαν στην ανάπτυξη της, και η DGP βαρύτητα, από τους Dvali, Gabadadze, και Porati. Η πρώτη είναι μια άμεση φαινομενολογική προσέγγιση, όπου μπορεί απλά να αλλάξει η εξίσωση πεδίου του Einstein από το ‘μπέρδεμα’ δρώντας σε τέσσερις διαστάσεις, ενώ η δεύτερη προσέγγιση χρησιμοποιεί επιπλέον διαστάσεις που γίνονται ορατές μόνο σε μεγάλες αποστάσεις. Και τα δύο μοντέλα αντιμετωπίζουν προβλήματα – όχι απαραίτητα ανυπέρβλητα, αλλά και σοβαρά – με τους νέους βαθμούς ελευθερίας και τις συνακόλουθες αστάθειες.

Η τροποποιημένη βαρύτητα σίγουρα αξίζει να την παίρνουμε στα σοβαρά. Όμως, όπως και η πεμπτουσία, θέτει περισσότερα προβλήματα από όσα επιλύει, τουλάχιστον προς το παρόν. Προσωπικά πιστεύω ότι η κοσμολογική σταθερά έχει πιθανότητα 90%, η δυναμική σκοτεινή ενέργεια 9% και η τροποποιημένη βαρύτητα μόνο 1%.

  • Τι υπονοεί η σκοτεινή ενέργεια για το μέλλον του σύμπαντος;

fatal-universeΑυτό εξαρτάται από το ποιά είναι η σκοτεινή ενέργεια. Εάν είναι αληθινά μια κοσμολογική σταθερά που διαρκεί για πάντα, το σύμπαν θα συνεχίσει να επεκτείνεται, θα ψυχθεί, και θα ‘αδειάσει’. Τελικά δεν θα μείνει τίποτα άλλο παρά ένας κενός χώρος.

Η κοσμολογική σταθερά θα μπορούσε να είναι σταθερή αυτή τη στιγμή, αλλά προσωρινά. Δηλαδή, θα μπορούσε να υπάρξει μια μελλοντική μεταβατική φάση στην οποία η ενέργεια του κενού να μειώνεται. Στη συνέχεια, το σύμπαν θα μπορούσε ενδεχομένως να καταρρεύσει.

Αν η σκοτεινή ενέργεια είναι δυναμική, τότε οποιαδήποτε πιθανότητα είναι ακόμα ανοιχτή. Αν είναι δυναμική και αυξάνεται (το w να είναι μικρότερη του -1 και μένοντας έτσι), θα μπορούσαμε να συναντήσουμε στο μέλλον ακόμη και ένα Μεγάλο Σχίσμα.

  • Ποιο είναι το επόμενο βήμα;

Θα θέλαμε πολύ να κατανοήσουμε τη σκοτεινή ενέργεια (ή την τροποποιημένη βαρύτητα) μέσω καλύτερων κοσμολογικών παρατηρήσεων. Αυτό σημαίνει ότι η μέτρηση της παραμέτρου w της καταστατικής εξίσωσης, θα βελτιώσει τις παρατηρήσεις της βαρύτητας στους γαλαξίες και τα σμήνη, ώστε να συγκρίνουμε τα διαφορετικά μοντέλα. Ευτυχώς, ενώ οι ΗΠΑ σταδιακά υποχωρεί από φιλόδοξα νέα επιστημονικά πρότζεκτ, ο Ευρωπαϊκός Οργανισμός Διαστήματος πάει μπροστά με έναν δορυφόρο για τη μέτρηση της σκοτεινής ενέργειας. Υπάρχουν, επίσης, εν εξελίξει επίγειες προσπάθειες, αλλά και Έρευνα του Μεγάλου Συνοπτικού Τηλεσκόπιου, που πρέπει να κάνει μια σπουδαία δουλειά από τη στιγμή που θα λειτουργήσει.

Πάντως απάντηση μπορεί να είναι βαρετή – η σκοτεινή ενέργεια να είναι μια απλή κοσμολογική σταθερά. Αυτό είναι το ένα. Τι θα κάνουμε γι ‘αυτό; Σε αυτή την περίπτωση χρειαζόμαστε καλύτερες θεωρίες, προφανώς, αλλά και δεδομένα από λιγότερο άμεσες εμπειρικές πηγές – επιταχυντές σωματιδίων, αναζητήσεις μιας πέμπτης δύναμης, δοκιμές της βαρύτητας, κάτι που θα μας δώσει κάποια εικόνα για το πώς ο χωροχρόνος και η κβαντική θεωρία πεδίου ταιριάζουν μεταξύ τους σε ένα θεμελιώδες επίπεδο.

Το μεγάλο γεγονός για την επιστήμη είναι ότι οι απαντήσεις δεν βρίσκονται στο πίσω μέρος του βιβλίου. Έχουμε να λύσουμε μόνοι μας τα προβλήματα. Κι αυτό όντως είναι μεγάλο.

Πηγή: Cosmic Variance, του Sean Caroll

Posted in SCIENCE=EPI-HISTEME | Tagged , , , , , , | Leave a comment


The Internet of Everything Will Impact Everything, Including Your Next Tech Job

THE INTERNET OF Everything (IoE) is having an enormous impact on business. This phenomenon is completely reinventing the way businesses operate. It is bringing  productivity and competitiveness to higher levels along with opening up many doors to new and exciting opportunities. Companies that are more recently harnessing the power of IoE are excited to realize that it will impact their overall business strategy, not just their technology.

When it comes to IoE, it is important to think transformationally in order to understand what the connected devices involved will be and what business opportunities they will create. A major change to the tech job landscape is just one big aspect of these new business opportunities materializing. In fact, 86% of 1,400 business leaders surveyed by Accenture think that the industrial Internet of Everything will be a net creator of jobs. As IoE takes center stage, a host of new jobs will be created and current roles will be re-defined. It is my belief that IoE will create a major revolution in the way we work, dramatically changing jobs at different levels within the enterprise.


Before we delve into the impact IoE will have on enterprise jobs, we first must familiarize ourselves with exactly what IoE is. IoE expands on the concept of the “Internet of Things” in that it connects not just physical devices but quite literally everything by getting them all on the network. It moves beyond being a major buzzword and technology trend by connecting devices to one another and the Internet, and offers higher computing power. This connection goes beyond basic M2M communications, and it is the interconnection of devices that leads to automation and advanced “smart” applications. IoE works to connect more devices onto the network, stretching out the edges of the network and expanding the roster of what can be connected. IoE has a major play in all industries, from retail to telecommunications to banking and financial services.


IoE does put quite a few demands on the network that have not previously been there in order to be implemented correctly and maximize business potential. Decisions must be made from both a technology and enterprise side – the team implementing the on-the-ground technology must be very candid with what will be needed from the business side, such as extra funding, additional staff, planned network downtime or limited access. The management of the IoE implementation process and the demands placed on network administrators alone opens up the possibility of more Technology Implementation Manager roles. These Technology Implementation Managers would act as the liaison between the IT team and the C-Suite, and will provide education on what options are out there for IoE implementation, conduct vendor and partner research and handle the Requests for Proposals and make sure the business goals and initiatives for IoE implementation are outlined, with a detailed plan of how they will be met. Once the project is off the ground and the vendor is brought on board, this manager will be the day-to-day contact for the vendor and will also their role as the liaison between IT and the C-Suite.


IoE will have a very real impact on jobs at every level. Entry-level employees are entering the workforce at a great time, as they are better able to adapt to changing industry standards and expectations. They also came of age with the Internet, which changes their relationship with connected devices. They are used to having information they need right at their fingertips and rely more heavily on electronics to provide them with the information they are looking for. Coming in at an entry level, they may have even taken courses on Open Source or IoE, and be able to use this knowledge and skill set in their day-to-day tasks. For IT professionals of this level, IoE will mean that the boundaries of the network and system will expand and shift, and System Administrators will need to keep up with these shifts and have tricks in their toolbox to accommodate those before they move up to impact other levels of the network. The increases in devices on the network will place tons of strain on the network and create the need for increased bandwidth. It will also mean that Systems Administrators will no longer just be in charge of the network – they will have to be prepared to manage the connectivity of actual devices, while being prepared to manage the edges of the networks first, working their way in.


IoE will drastically change the way companies do business for the better. For members of the C-Suite, especially the Chief Operations Officer and Chief Innovations Officer, IoE will cause them to be on the lookout for additional opportunities it will create. For example, the COO must have a deep understand of what needs to be changed from an operational standpoint for IoE to be successfully integrated into day-to-day business. The COO must look at ways in which IoE will have the most impact specific to the company and industry – should IoE mainly be used to boost the customer experience, or the sales team? How disruptive will connected devices be, does there need to be a campaign around the benefits of disruption? For the Chief Financial Officer, IoE will be all about return on investment. They must ask themselves how the revenue model will change with IoE introduced and incorporated, and whether or not funding streams need to be altered and the extent to which board members must have buy-in.


It is no secret that IoE will have an immensely positive impact on the overall job creation and growth in many industries. The Jobs Report for December 2014 reported that 252,000 US jobs were created in December alone, and the unemployment rate dropped to 5.6%. IoE will only add to these numbers, as it will require companies to grow and expand their skill-set to hire professionals who possess the skills needed to properly implement the technology. All of this job growth will also boost the gross domestic product of twenty of the world’s largest economies by 2030 by an additional $14 trillion. IoE will also open the doors for more corporate training sessions, creating an additional set of jobs – IoE trainers. And, in order for IoE to be implemented, we can expect to see IoE-specific engineers, IT personnel and the creation of entire vendors that are just focused on advancing IoE.

IoE is shifting the industry, both from a technology standpoint and within the enterprise. It is not just creating more robust and innovative technologies, it is also creating an entirely new field of jobs that have never been seen before. It is opening up doors for even more job development and growth in technology fields in all industries, and is allowing for the cross-pollination of the C-Suite and IT teams.

Dan T. Pickett is Chairman and CEO of nfrastructure.


Posted in Computers and Internet | Tagged , , , , , , , , | Leave a comment

















Posted in Books | Tagged , , , , | Leave a comment