DEEP OR FAR SPACE NEWS (e)


(BEING CONTINUED FROM 6/02/23)

H)Unraveling the origins of life: Scientists discover ‘cool’ sugar acid formation in space

A critical molecule for the metabolism of living organisms has been synthesized for the first time by University of Hawaiʻi at Mānoa researchers at low temperatures (10 K) on ice coated nanoparticles mimicking conditions in deep space, marking a “cool” step in advancing our understanding of the origins of life.

The UH Mānoa Department of Chemistry team of Professor Ralf I. Kaiser, and postdoctoral fellows Jia Wang and Joshua H. Marks worked with computational chemist Professor Ryan C. Fortenberry from the University of Mississippi to explore how glyceric acid can form in cold, carbon dioxide-rich icy environments of outer space. Glyceric acid is the simplest sugar acid that helps with a process called glycolysis, which is like the engine that helps break down the food we eat into energy that our bodies can use.

Using experiments with interstellar model ices and proxies of energetic Galactic Cosmic Rays at the UH Mānoa’s W. M. Keck Research Laboratory in Astrochemistry, racemic glyceric acid was formed and detected with the help of photo ionization lasers in the gas phase. These molecules might play a role in the development of life on planets like Earth. Scientists now hope to detect these molecules in space using telescopes such as ALMA.

“The study suggests that molecules like glyceric acid could have been synthesized in molecular clouds and possibly in star forming regions prior to their delivery to Earth via comets or meteorites thus contributing to the building blocks of life,” Kaiser said. “Understanding how these molecules form in space is crucial for unraveling the mysteries of life’s origins.”

“The potential presence of such molecules in space shows how the chemistry in our bodies is connected to the chemistry of ‘the beyond,'” Fortenberry said. “Additionally, the interaction of experiment and computation also highlights how different perspectives on science work together to make the generation of new knowledge possible.”

More information: Jia Wang et al, Interstellar formation of glyceric acid [HOCH 2 CH(OH)COOH]—The simplest sugar acid, Science Advances (2024). DOI: 10.1126/sciadv.adl3236

th)The mystery of how strange cosmic objects called ‘JuMBOs’ went rogue

By Robert Lea

“These findings could significantly alter our perception of planetary dynamics and the diversity of planetary systems in our universe.”

Two orbs to the right appear to have blasted away from a star in the distance.

Two rogue JuMBOs are ejected from their star system but remain bound together. (Image credit: Robert Lea (created with Canva))

At the end of 2023, astronomers made a startling discovery in the Orion Nebula. Using the James Webb Space Telescope (JWST), the team found 40 pairs of planetary mass objects — none of which orbit a star. They’re called Jupiter-Mass Binary Objects, or JuMBOs.

In short, this discovery directly challenged both star birth and planet formation theories. The origins of these orbs remained unknown, and it was unclear how such a large collection of pairs of these bodies came to wander the Orion stellar nursery, which is located around 1,350 light-years from Earth.

Now, however, a team of astrophysicists from the University of Nevada and Stoneybrook University think they may have solved the puzzle. The team provides a compelling model to explain how these strange bodies could have been ejected from their home systems, going rogue while still remaining paired with a binary partner. The findings, if correct, could revolutionize our picture of planetary evolution.

“Our simulations demonstrate that close stellar encounters can spontaneously eject pairs of giant planets from their native systems, leading them to orbit each other in space,” Nevada Center for Astrophysics postdoctoral fellow Yihan Wang said in a statement. “These findings could significantly alter our perception of planetary dynamics and the diversity of planetary systems in our universe.”

A JuMBO challenge

JuMBOs have been a challenge to explain because their existence doesn’t quite conform to classically accepted models of star formation or planet formation. 

As hot, gassy and binary bodies, JuMBOs may initially seem as if they form when overly dense regions in a clouds of gas and dust collapse. That’s how stars form, and is even the mechanism followed by so-called “failed stars,” or brown dwarfs, which get their nickname from the fact they fail to gather enough mass to fuse hydrogen to helium in their cores — a defining stellar characteristic.

However, JuMBOS likely take a different route into reality. The chance of a star possessing a binary partner, for instance, diminishes significantly as the masses of those stars decreases. For example, around 75% of massive stars exist in binary pairings, but only 50% of stars with masses similar to the sun are found with a stellar partner. And the chance of finding a brown dwarf, with masses around 0.75 times that of the sun, in a binary is vanishingly small, approaching zero percent.

Brown dwarfs, on average, have masses around 75 times that of Jupiter. Thus, stars less massive than this, one can reason, should never exist in binaries — certainly not frequently enough to find 40 in the same nebula. JuMBOs have masses under the lower end of brown dwarfs, less than 13 times the mass of Jupiter. So, what’s going on?

Two red orbs are illustrated on a black background with various streaks and spots.
An illustration of Jupiter-mass binary objects (JuMBOs) in the Orion Nebula (Image credit: Gemini Observatory/Jon Lomberg)

Furthermore, JuMBOs can’t be explained with standard planetary formation models either. These are models that would see them born from leftover gas around a parent star, or stars if you’re working with a binary system. That is because, though we know planets are regularly kicked from their home systems to become rogue planets, aka cosmic orphans wandering the cosmos without a parent star, this process should be so violent that it’d splits apart any possible gravitationally bound planets.

The fact astronomers found 40 pairs of JuMBOs in the Orion Nebula alone therefore seems to rule out some freak ejection event that led to a planetary pair being ejected together without being split up.

So, to solve the mystery of where JuMBOS could possibly come from, the team performed advanced supercomputer simulations of ejection events. These “N-body” simulations allowed them to explore interactions in densely packed clusters of stars that could mean massive planets are ejected but remain gravitationally bound to each other. The conclusion was that JuMBOs could come from densely populated stellar clusters. If this is the case, then these strangely free-floating binaries could actually be quite common.

The team’s results have ramifications for our understanding of planet formation in general, indicating that characteristics such as orbital separation between planetary bodies in a JuMBO pairing as well as the shape of that orbit could affect the turbulent environmental conditions influencing planetary birth.

“It introduces dynamic stellar interactions as an important factor in the development of unusual planetary systems in dense stellar environments,” Rosalba Perna, team member and Stony Brook University professor of physics, said in the statement.

The team’s research sets the stage for future JuMBO investigations, potentially with the instrument that helped discover these stellar pairings: The JWST. It also tells researchers that planet formation is a more varied and exciting process than was previously known.

“Understanding the formation of JuMBOs helps us challenge and refine the prevailing theories of planet formation,” team member and UNLV astrophysicist Zhaohuan Zhu said in the statement. “Forthcoming observations from the JWST may help us do just that, offering new insights with each observation that will help us better formulate new theories of giant planet formation.

SOURCE https://phys.org/ ,https://www.space.com/

(to be continued)

About sooteris kyritsis

Job title: (f)PHELLOW OF SOPHIA Profession: RESEARCHER Company: ANTHROOPISMOS Favorite quote: "ITS TIME FOR KOSMOPOLITANS(=HELLINES) TO FLY IN SPACE." Interested in: Activity Partners, Friends Fashion: Classic Humor: Friendly Places lived: EN THE HIGHLANDS OF KOSMOS THROUGH THE DARKNESS OF AMENTHE
This entry was posted in NEWS FROM SYNPAN and tagged , , . Bookmark the permalink.

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.