M – AR(E)S EXPEDITIONS (IV) – ROVERSγ


(BEING CONTINUED FROM 28/05/13)

Map of Mars, showing the location of Mars 2 center left, in relation to Viking 1, Mars Pathfinder and Opportunity.

Η)Mars 2: (FAILED) USSR, launched May 19, 1971. The Mars orbiter and lander arrived on Nov. 2, 1971, but returned no useful data, and the lander burned up due to steep entry.

 

Mars3 lander vsm.jpg

Mars 2,3  Lander model at the Memorial Museum of Cosmonautics in Russia

Lander spacecraft system

The Mars 2 descent module was mounted on the bus/orbiter opposite the propulsion system. It consisted of a spherical 1.2 m diameter landing capsule, a 2.9 m diameter conical aerodynamic braking shield, a parachute system and retro-rockets.

The entire descent module had a fueled mass of 1210 kg, the spherical landing capsule accounting for 358 kg of this. An automatic control system consisting of gas micro-engines and pressurized nitrogen containers provided attitude control. Four “gunpowder” engines were mounted to the outer edge of the cone to control pitch and yaw.

The main and auxiliary parachutes, the engine to initiate the landing, and the radar altimeter were mounted on the top section of the lander. Foam was used to absorb shock within the descent module. The landing capsule had four triangular petals which would open after landing, righting the spacecraft and exposing the instrumentation.

The lander was equipped with two television cameras with a 360 degree view of the surface as well as a mass spectrometer to study atmospheric composition; temperature, pressure, and wind sensors; and devices to measure mechanical and chemical properties of the surface, including a mechanical scoop to search for organic materials and signs of life. It also contained a pennant with the Soviet coat of arms.

Four aerials protruded from the top of the sphere to provide communications with the orbiter via an onboard radio system. The equipment was powered by batteries which were charged by the orbiter prior to separation. Temperature control was maintained through thermal insulation and a system of radiators. The landing capsule was sterilized before launch to prevent contamination of the Martian environment.

Prop-M Rover

Mars Prop-M Rover

Mars 2 lander had a small 4.5 kg Mars ‘rover’ on board, which would move across the surface on skis while connected to the lander with a 15-meter umbilical. Two small metal rods were used for autonomous obstacle avoidance, as radio signals from Earth would take too long to drive the rovers using remote control. The rover carried a dynamic penetrometer and a radiation densitometer.[2]

The main PROP-M frame was a squat box with a small protrusion at the center. The frame was supported on two wide flat skis, one extending down from each side elevating the frame slightly above the surface. At the front of the box were obstacle detection bars.

The rover was planned to be placed on the surface after landing by a manipulator arm and to move in the field of view of the television cameras and stop to make measurements every 1.5 meters. The traces of movement in the Martian soil would also be recorded to determine material properties.

Because of the demise of the lander, the rover was not deployed.

Entry, descent, and crash landing

The descent module separated from the orbiter on 27 November 1971 about 4.5 hours before reaching Mars. After entering the atmosphere at approximately 6 km/s, the descent system on the module malfunctioned, possibly because the angle of entry was too steep. The descent sequence did not operate as planned and the parachute did not deploy.[2]The descent module became the first man-made object to impact the surface of Mars. The exact landing site is unknown.[1]

REFFERENCES

  1. ^ Jump up to:a b Pyle, Rod (2012). Destination Mars. Prometheus Books. pp. 73–78. ISBN 978-1-61614-589-7. “…Mars 2 and Mars 3. Both reached Mars shortly after Mariner 9. Unfortunately, these Soviet ships were not reprogrammable, as was the case with Mariner 9, and rather than wait out the huge, planet-wide dust storm, they proceeded to follow their programming right on schedule. Landers were dispatched from each, the first crashing and the second apparently reaching the surface intact but losing radio contact immediately. The orbiters fared little better; following their simple logic, both used up their available resources snapping images of the featureless dust clouds below.
  2. ^ Jump up to:a b c Perminov, V.G. (July 1999). The Difficult Road to Mars – A Brief History of Mars Exploration in the Soviet Union. NASA Headquarters History Division. pp. 34–60. ISBN 0-16-058859-6.
  3. Jump up^ “Missions to Mars”. The Planetary Society.

 

Θ)Mars 3: (FAILED) USSR, launched May 28, 1971. The Mars orbiter and lander arrived on Dec. 3, 1971. The lander operated on the surface of Mars for 20 seconds before failing.

Lander spacecraft system

The Mars 3 descent module was mounted on the bus/orbiter opposite the propulsion system. It consisted of a spherical 1.2 m diameter landing capsule, a 2.9 m diameter conical aerodynamic braking shield, a parachute system and retro-rockets.

The entire descent module had a fueled mass of 1210 kg, the spherical landing capsule accounted for 358 kg of this. An automatic control system consisting of gas micro-engines and pressurized nitrogen containers provided attitude control. Four “gunpowder” engines were mounted to the outer edge of the cone to control pitch and yaw.

The main and auxiliary parachutes, the engine to initiate the landing, and the radar altimeter were mounted on the top section of the lander. Foam was used to absorb shock within the descent module. The landing capsule had four triangular petals which would open after landing, righting the spacecraft and exposing the instrumentation.

The lander was equipped with two television cameras with a 360 degree view of the surface as well as a mass spectrometer to study atmospheric composition; temperature, pressure, and wind sensors; and devices to measure mechanical and chemical properties of the surface, including a mechanical scoop to search for organic materials and signs of life. It also contained a pennant with the Soviet coat of arms.

Four aerials protruded from the top of the sphere to provide communications with the orbiter via an onboard radio system. The equipment was powered by batteries which were charged by the orbiter prior to separation. Temperature control was maintained through thermal insulation and a system of radiators. The landing capsule was sterilized before launch to prevent contamination of the martian environment.

Prop-M Rover

Mars 3 lander had a small 4.5 kg ‘Mars rover’ on board, which was planned to move across the surface on skis while connected to the lander with a 15-meter umbilical cable. Two small metal rods were used for autonomous obstacle avoidance, as radio signals from Earth would take too long to drive the rovers using remote control. The rover carried a dynamic penetrometer and a radiation densitometer.

The main PROP-M frame was a squat box with a small protrusion at the center. The frame was supported on two wide flat skis, one extending down from each side elevating the frame slightly above the surface. At the front of the box were obstacle detection bars.

The rover was planned to be placed on the surface after landing by a manipulator arm and to move in the field of view of the television cameras and stop to make measurements every 1.5 meters. The traces of movement in the Martian soil would also be recorded to determine material properties.

Because of the demise of the lander, the rover was not deployed.

  Entry, descent, landing, and transmission failure

Mars 3’s descent module was released at 09:14 UT on December 2, 1971, 4 hours 35 minutes before reaching Mars. The descent module entered the Martian atmosphere at roughly 5.7 km/s. Through aerodynamic braking, parachutes, and retrorockets, the lander achieved a soft landing at 45°S 202°E Coordinates: 45°S 202°E[5] and began operations.

After 14.5 seconds, at 13:52:25, transmission on both data channels stopped for unknown reasons and no further signals were received at Earth from the Martian surface. It is not known whether the fault originated with the lander or the communications relay on the orbiter. The cause of the failure may have been related to the extremely powerful martian dust storm taking place at the time which may have induced a coronal discharge, damaging the communications system. The dust storm would also explain the poor image lighting.[4]

A partial image (70 lines) was transmitted. Although this image appears to show the horizon and dark sky, the photograph was taken with a cycloramic camera. This means that to correctly view the photograph it should be turned 90 degrees clockwise. According to the Soviet Academy of Sciences there is nothing, horizon or otherwise, identifiable in the photograph.[4]

References

  1. Jump up^ “Mars 3”. Nasa. Nasa, n.d. Web. 14 August 2012. http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=1971-049A
  2. Jump up^ See 1
  3. Jump up^ Conway Snyder (JPL) and Vasili Moroz (IKI), “Spacecraft Exploration of Mars”, Mars, University of Arizona Press, 1992
  4. ^ Jump up to:a b c Perminov, V.G. (July 1999). The Difficult Road to Mars – A Brief History of Mars Exploration in the Soviet Union. NASA Headquarters History Division. pp. 34–60. ISBN 0-16-058859-6.
  5. ^ Jump up to:a b c d Webster, Guy (April 11, 2013). “NASA Mars Orbiter Images May Show 1971 Soviet Lander”. NASA. Retrieved April 12, 2013.
  6. Jump up^ “Failed Soviet Mars spacecraft found?”. 3 News NZ. April 15, 2013.

The 1st image ever transmitted from Mars shows “nothing identifiable” (correct image orientation is 90°cw) (Mars 3, December 2, 1971) (see 1st clear Mars image, Viking 1, July 20, 1976).

SOURCE  http://www.space.com/ ,WIKI

About sooteris kyritsis

Job title: (f)PHELLOW OF SOPHIA Profession: RESEARCHER Company: ANTHROOPISMOS Favorite quote: "ITS TIME FOR KOSMOPOLITANS(=HELLINES) TO FLY IN SPACE." Interested in: Activity Partners, Friends Fashion: Classic Humor: Friendly Places lived: EN THE HIGHLANDS OF KOSMOS THROUGH THE DARKNESS OF AMENTHE
This entry was posted in NEWS FROM SYNPAN and tagged , , , , , , , . Bookmark the permalink.

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s